If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.35t^2-50t+100=0
a = 0.35; b = -50; c = +100;
Δ = b2-4ac
Δ = -502-4·0.35·100
Δ = 2360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2360}=\sqrt{4*590}=\sqrt{4}*\sqrt{590}=2\sqrt{590}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{590}}{2*0.35}=\frac{50-2\sqrt{590}}{0.7} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{590}}{2*0.35}=\frac{50+2\sqrt{590}}{0.7} $
| 33+12x=8/12 | | -65=2(5z+14) | | X^2+1.6x=-0.04 | | -22-6x=108+4x | | 6x=32-6x^2 | | 3.5(-3x+2=2(4.5x-1) | | 1.875-2^n=0 | | 50-1.5x=37.5 | | 142x5=710 | | 7(f-5)=26 | | 102+18+y=180 | | 20/80=-x/60 | | (3x-5)=25 | | 11/7+3x=2 | | 3x-1/2=5x | | 15x+10=5(2x+7) | | +3(a-2+2a=24 | | .9x=210 | | 4a/3=-21 | | 3(8+4a)=2(10+7a)=0 | | 3x+2(x-9)=21 | | .9x=130 | | 2x/3=24/6 | | 9^2m/3=3^2m | | .9x=75 | | x-25=x-15 | | .9x=53 | | .9x=135 | | 16.5+5x=2x | | 0.9x=150 | | 16.5x=2 | | 16.5x=2x |